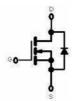

H3402 N-Channel Enhancement Mode Field Effect Transistor

V _{(BR)DSS}	R _{DS(on)} MAX	I₀	
30 V	53mΩ@10V		
	68mΩ@4.5V	4. 2A	
	90mΩ@2.5V	987 (45) (45) (45) (45)	


FEATURE

• High dense cell design for extremely low R_{DS(ON)}

APPLICATION

- Load/Power Switching
- Exceptional on-resistance and maximum DC current capability
 - Interfacing Switching

Equivalent Circuit

Solid dot = Green molding compound device, if none,the normal device.

Maximum ratings (T_a=25℃ unless otherwise noted)

Parameter Drain-Source Voltage Gate-Source Voltage		Symbol	Maximum	Units	
		V _{DS}	30	V	
		V _{GS}	±12		
Continuous Drain	T _A =25°C		4.2		
Current ^A	T _A =70°C	I _D	3.4] A	
Pulsed Drain Current ⁸		I _{DM}	15	1	
	T _A =25°C	В	1.4	l w	
Power Dissipation A	T _A =70°C	P _D	1	¬	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

30V N-Channel Enhancement Mode MOSFET

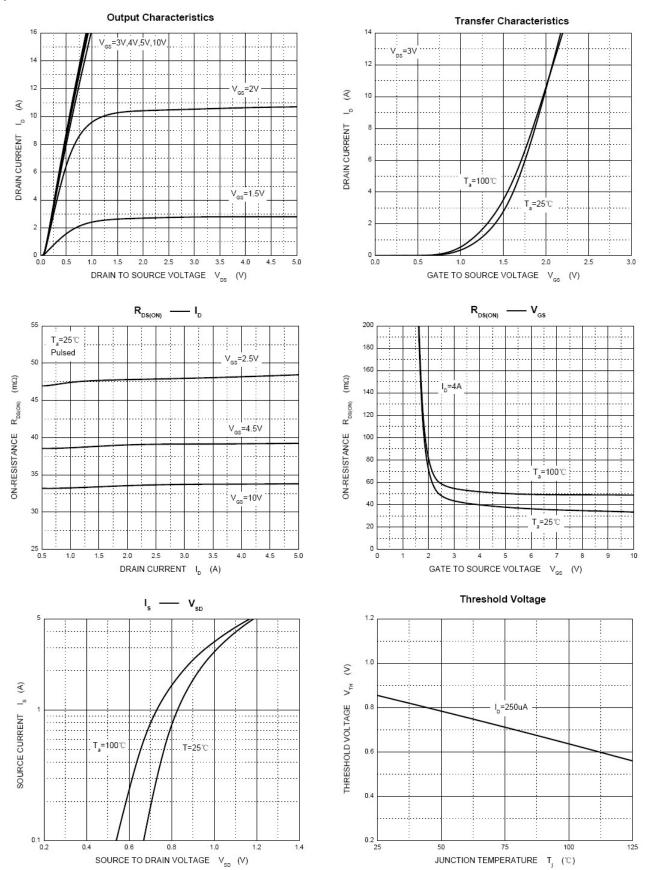
Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS					A. T.	
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu A, V_{GS}=0V$		30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V				1	μА
			T _J =55°C			5	μ.,
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V				100	nΑ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250$ μA		0.6	1	1.4	V
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V		10			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =4A			45	55	mΩ
			T _J =125°C		66	80	11122
		V_{GS} =4.5V, I_D =3A	/i		55	70	mΩ
		V _{GS} =2.5V, I _D =2A			83	110	mΩ
g FS	Forward Transconductance	$V_{DS}=5V$, $I_{D}=4A$			8		S
V _{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.8	1	V	
Is	Maximum Body-Diode Continuous Curr	ent			2.5	Α	
DYNAMIC	PARAMETERS	24	3		y-		
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			390		pF
Coss	Output Capacitance				54.5		pF
C _{rss}	Reverse Transfer Capacitance				41		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			3		Ω
SWITCHI	NG PARAMETERS						
Q _g	Total Gate Charge	V _{GS} =4.5V, V _{DS} =15V, I _D =4A			4.34		nC
Q_{gs}	Gate Source Charge				0.6		nC
Q_{gd}	Gate Drain Charge				1.38		nC
t _{D(on)}	Turn-On DelayTime				3.3		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =3.75 Ω , R_{GEN} =6 Ω			1		ns
t _{D(off)}	Turn-Off DelayTime				21.7		ns
t _f	Turn-Off Fall Time				2.1		ns
t _{rr}	Body Diode Reverse Recovery Time	l _F =4A, dl/dt=100A/μs			12		ns
Q _{rr}	Body Diode Reverse Recovery Charge	e I _F =4A, dl/dt=100A/μs			6.3		nC

A: The value of R_{BJA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.


D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

Notes: 1. Repetitive Rating: Pulse width limited by maximum junction temperature. 2. Surface Mounted on FR4 Board, t<5 sec.

- 3. Pulse Test: Pulse Width ≤300us, Duty Cycle≤2%.
- 4. Guaranteed by design, not subject to production testing.

Typical characteristics

